TECHNISCHE
W ™ oY

Center for Information Services and High Performance Computing (ZIH)

Dr. Matthias S. Muller (RWTH Aachen University)

Tobias Hilbrich (Technische Universitat Dresden)

Joachim Protze (RWTH Aachen University, LLNL)

Email: 2
mueller@itc.rwth-aachen.de \I H
tobias.hilbrich@tu-dresden.de o Y er———

High Performance Computing

protze@itc.rwth-aachen.de

Content

Motivation
MPI| usage errors
Examples: Common MPI usage errors
» Including MUST's error descriptions
Correctness tools
MUST usage

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 2

How many errors can you spot in this tiny example?

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);

MPI_Recv (buf, 2, MPI_INT, size - rank, , MPI_COMM WORLD, MPI_STATUS IGNORE) ;
MPI Send (buf, 2, type, size - rank, , MPI_COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);

return

At least 8 issues In this code example
TECHNISCHE
UNIVERSITAT Rw“'

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 3

Content

Motivation
MPI| usage errors
Examples: Common MPI usage errors
» Including MUST's error descriptions
Correctness tools
MUST usage

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 4

MPI usage errors

MPI| programming is error prone
Bugs may manifest as:

» Crashes

» Hangs

» \Wrong results

» Not at all! (Sleeping bugs)
Tools help to detect these issues

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 5

MPI usage errors (2)

Complications in MPI usage:
» Non-blocking communication
» Persistent communication
» Complex collectives (e.g. Alltoallw)
» Derived datatypes
» Non-contiguous buffers

Error Classes include:
» Incorrect arguments
» Resource errors
» Buffer usage
» Type matching

> Deadlocks n
TECHNISCHE w I H
UNIVERSITAT

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 6

Content

Motivation
MPI| usage errors
Examples: Common MPI usage errors
» Including MUST's error descriptions
Correctness tools
MUST usage

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 7

Skipping some errors

Missing MPI_Init:
Current release doesn’t start to work,
Implementation in progress

Missing MPI|_Finalize:
Current release doesn’t terminate all
analyses, work in progress

Src/dest rank out of range (size-rank): leads to
crash, use crash save version of tool

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 8

MUST: Tool design

Application Additional tool ranks

MPI | ihrarv
Split-comm-world

Force status wrapper

GTI: event forwarding, network

Local Analyses Non-Local Analyses

o |
O ©
e | S
o |3
Sl
Q| =2
> | <
o | L

Rewrite-comm-world

MPI Library

TECHNISCHE I‘w I H
UNIVERSITAT

DRESDEN Matthias Muller, Joachim Protze, Tobias Hilbrich 9

Y 4
GTI: event forwarding, network

Loca._2

NMEWRES Non-L e 53 Analyses

o —

TECHNISCHE I‘w I H
UNIVERSITAT

DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 10

Fixed some errors:

int main (int argc, char** argv)

{

int rank, size, buf[8];

<:]£E£kInit (&argc, &ar&EiZ::>

MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);

MPI_Recv (buf, 2, n@, size - rank - > MPI_COMM WORLD, MPI_STATUS IGNORE) ;
MPI_Send (buf, X_type, size - rank - 1, 103, MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. n", rank, size);
<:1£E5*Finalize (), ::::::>
return 0;

TECHNISCHE I‘w I H
UNIVERSITAT

DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 11

Must detects deadlocks

| - MUST Outputfie 3 | LIMUST Outputfile x| 2|
| @ file:/home/pj416018/MUST/example/MUST _Output.html vE v N 4

MUST Output, starting date: Thu Nov 28 13:38:01 2013,

eferences of a representative

The apphcatlon lssued a set of MPI calls that can cause a deadlock! A graphical representation of this situation Is available in a detailed deadlock view]
Error] ML tput-files . . References 1-2 list the involved calls (limited to the first 5 calls, further calls may be involved). The 1st occurrence) called from:
application still runs Lt' the deadloc Qanifested (e.g. caused a hang on this MPI implementation) you can attach to the involved ranks with a debugger 0 main@example.c:15
or abort the application (if necessary).
ference 2 rank 1: MPI_Recv
1st occurrence) called from:
0 main@example.c:15

Click for graphical representation of
the detected deadlock situation.

TECHNISCHE RWNTH

UNIVERSITAT
DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 12

Graphical representation of deadlocks

[MUST Outputtie 3 | 1 MUST Outpuntile X |2 -2x
[& file:mome pja16018MUST/exampleMUST_Output-filesMUST_Deadiock.htmi MR ® e
MUST Deadlock Details, date: Thu Nov 28 13:38:06 2013,
ack to MUST error repo
hat shows active wait-for dependencies between

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for grap:
processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend details the wait-for graph components in addition , while a
parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, 8 message queue graph shows active and unmatched point-to-point communications. This
graph only includes operations that could have been intended to match a point-to-point operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation
in the parallel call stack. The leafs of this call stack graph show the components of the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this

MPI implementation) you can attach to the involved ranks with a debugger or abort the application (if necessary).

MPI COMM WORLD

Active MPI Call
0: MPI_Recv Rank O waits
for rank 1 ’
comm=A, tag=123|comm Sub Operation
and vv.
I: MPI_Recv
A A waits for B and C B
c
main@example.c: 15 S|mp|e Ca”
e 01 stack for this T AvaisforBorC [
example.
MPI_Recv e
T
c

TECHNISCHE
UNIVERSITAT
DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 13

Fix1: use asynchronous receive

int main (int argc, char** argv)

{

int rank, size, buf[8];
Useasynchronous

MPI_Init (karge, &argv); receive: (MPI_Irecv)

MPI Comm rank (MPI_ COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_ INTEGER,

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI_COMM WORLD, &request);
MPI Send (buf, , type, size - rank - 1, , MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ();

return 0O;

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN \atthias Milller, Joachim Protze, Tobias Hilbrich 14

MUST detects errors in handling datatypes

[2 MusT utputtile

| %

& Ne:jhome/pj416018MUST /exampleMUST_Output.html

MUST Output, starting date: Thu Nov 28 13:50:48 2013,

0 [Error]

A receive operation uses a (datatype,count) pair that can not hol
send that did not fit into the receive operation is at (contiguous L
detailed description of datatype positions). The send operation was started at reference 1, the receive operation was started at
reference 2. (Information on communicator: MPI_ COMM_WORLD) (Information on send of count 2 with type:Datatype created at
reference 3 Is for Fortran, based on the following type(s): { MPI INTEGER]}) (Information on receive of count 2 with type:MPI INT)

Use of uncommited
datatype: type

References of a representative
[process:

reference 1 rank 0: MPI_Send

presentative |(1st occurrence) called from:

ta transfered by the send it matches! The first element of the
(MPI_INTEGER) In the send type (consult the MUST manual for a

location: #0 main@example-fixl.c:18

MPI_Send (1st

occurrence) called [reference 2 rank 1: MPI_Irecv
from: {15t occurrence) called from:

#0 main@example- |#0 main@example-fix1.c:16

Argument 3 (datatype) is not commited for transfer, call MPI Type commit before using the type for transfer!

fixl.c:18
reference 3 rank 0:
PI_Type_contiguous (1st
ccurrence) called from:
#0 main@example-fixl.c:13
Representative lerences of a representative
location:

MPI_Send (1st
occurrence) called

This communication overlaps with the other communication at position: (conhguons)(Ol(MPl INTEGER)
A graphical representation of this situation Is available in a

0-1 [Error| . ’
(Information on datatypeDatatype created at reference 1 is for Fortran, based on the following type(s): { MPI_INTEGER}) e PL_Type_con ous (1st
#0 main@example- nce) called from:
fixl.c:18 main@example-fixl.c:13
[The memory regions to be transfered by this send operation overlap with reglons spanned by a pending non-blocking receive operation! References of a representative
- - S— roCess:
(Information on the request associated with the other communication: =
Request activated at reference 1) Re};x:&g;tg.me eference 1 rank 0: MPI I
(Information on the datatype aiml?tword)wlth the other communication: MPI_Send (1st _[(1st occurrence) called ﬁ:mp:
0 Error| The other communication overlaps with this communication at position:(MPI_INT) occurr}!rr:)c:\? called |#0 main@example-fix1.c:16
(Information on the datatype associated with this communication: ¥0 mg;nl(c‘i:)l(gmple- et:;ence 2 rank 0: 15t
Datatype created at reference 2 is for Fortran, based on the following type(s): { MPI INTEGER}) - -w-conu":g“f:o“’_(-
This communication overlaps with the other communication at posmon (connguom)(ﬂ](MPl INTEGER) "i)C“" ence) ca le.fi lm'-l 3
A graphical representation of this situation is available in a ' (MU main@example-fix1.c:
The memory regions to be transfered by this send operation overlap with regtons spanned by a pendlng non-blocking receive operat:on' ferences of a representative
(Information on the request associated with the other communication: i
(Information on the datal : aﬁm&r&f?&c:o&er communication: Rel;mt:?ve ference 1 rank 1: MPL Irecv
. MPI_INT) MPI_Send (1st |1st occurrence) called from:
1 [Erroy The other communication overlaps with this communication at position:(MPI_INT) OCCT;? called [#0 main@example-fix1.c:16
#0 main@example- [reference 2 rank 1:
(Information on the datatype assoclated with this communication: :
Datatype created at reference 2 is for Fortran, based on the following type(s): { MPI INTEGER}) fixl.c:18 M;mefg:“ f?o‘: (1st

main@example-fixl.c:13

&

TECHNISCHE
UNIVERSITAT
DRESDEN

elerences of a representative

rocess:

Matthias Mduller, Joachim Protze, Tobias Hilbrich

15

vl

Fix2: use MPI_Type commit

int main (int argc, char** argv)

{

int rank, size, buf[8];
MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;

MPI_Type contiguous (2, MPI INTEGER, &type); [' Commit the
MPI_Type_commit (&type) ; —_— datatype before
MPI Request request; ~ Uoage

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, 2, type, size - rank - 1, , MPI _COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);
MPI Finalize ();

return 0O;

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 16

MUST detects errors in transfer buffer sizes / types

MUST Outputfie

(Rd!

} & fileshome/pjd16018MUST /fexampleMUST_Output.heml

MUST Output,

|Error]

type:Datatype created at reference 3 is for Fortran, commited at reference 4, based on the following type(s): { MPI INTEGER})

starting date: Thu Nov 28 13:51:42 2013,

than receive buffer

Size of sent message larger

eferences of a representative
rocess:

eference 1 rank 0: MPI_Send

A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first element

of the send that did not fit into the receive operation is at (contiguous)[0](MPI_INTEGER) in the send type (consult the MUST

manual for a detalled description of datatype positions). The send operation was started at reference 1, the receive operation
was started at reference 2. (Information on communicator: MPI COMM_WORLD) (Information on send of count 2 with

(Information on receive of count 2 with type:MPI_INT)

MPI_Send (1st occurrence)

1st occurrence) called from:
#0 main@example-fix2.c:19

reference 2 rank 1: MPI_Irecv
Representative location: |(1st occurrence) called from:
#0 main@example-fix2.c:17
called from:
#0 main@example-fix2.c:19reference 3 rank 0:
PI_Type_contiguous (1st
F::curmnce) called from:

20 main@example-fix2.c:13

reference 4 rank 0:
PI_Type_commit (1st
ccurrence) called from:
#0 main@example-fix2.c:14

[Exror|

A recelve operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first element
of the send that did not fit into the receive operation is at (contiguous)[0]J(MPI_INTEGER) in the send type (consult the MUST
manual for a detailed description of datatype positions). The send operation was started at reference 1, the receive operation

was started at reference 2. (Information on communicator: MPI COMM_WORLD) (Information on send of count 2 with
type:Datatype created at reference 3 is for Fortran, commited at reference 4, based on the following type(s): { MPI_INTEGER})

(Information on receive of count 2 with type:MPI_INT)

|MPI_Send (1st occurrence)

terences of a representative
roOCess:

ference 1 rank 1: MPI_Send
1st occurrence) called from:
main@example-fix2.c:19

ference 2 rank 0: MPI_Irecv
Representative location: [(1st occurrence) called from:
main@example-fix2.c:17
called from:
#0 main@example-fix2.c:19freference 3 rank 1:
PI_Type_contiguous (1st
ccurrence) called from:

#0 main@example-fix2.c:13

main@example-fix2.c:14

The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive
operation!

(Information on the request associated with the other communication:
Request activated at reference 1)

e

References of a representative
rOCess:

eference 1 rank 0: MPI_Irecv
1st occurrence) called from:
20 main@example-fix2.c:17

Representative location:

(Information on the datatype associated with the other communication:

TECHNISCHE |
UNIVERSITAT

MPI Send (1st occurrence)reference 2 rank 0:

DRESDEN

Matthias Miiller, Joachim Protze, Tobias Hilbrich 17

Fix3: use same message size for send and receive

int main (int argc, char** argv)
{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_INTEGER, &type);
MPI Type commit (&type)

MPI_Request request;

MPI Irecv (buf, 2, MPI_INT, size - rank - 1, , MPI_COMM WORLD, &request);

MPI Send (buf, 1, type, size - rank - 1, , MPI_COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size); Reduce the message
MPI Finalize (); L size

return 0;

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 18

MUST detects use of wrong argument values

[MusT outputile | & cad
& Me:jhome/pj41601BMUST/exampleMUST_Output.html v |9 N a

MUST Output, starting date: Mon Dec 2 13:11:12 2013,

Use of Fortran type in C,
datatype mismatch between

ecejver

Herences ol a represenmtlm
855

ference 1 rank 1:
PI_Send (1st occurrence)
alled from:

#0 main@example-fix3.c:19

A send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous){0}(MPI_INTEGER) in the send reference 2 rank 0:
type and at (MPI_INT) in the receive type (consult the MUST manual for a detalled descrlpﬁon of damtype posmons) A graphical| Representative location: |MPI_Irecv (1st occurrence)
representation of this situation is a\'arblc in a de (8] 2 IS 3 MPI_Send (1st called from:
The send operation was started at reference 1, the receive operauon was started al rel‘emnce 2. (Information on commumcawr occurrence) called from: [#0 main@example-fix3.c:17
MPI COMM WORLD) (Information on send of count 1 with type:Datatype created at reference 3 is for Fortran, commited at |#0 main@example-fix3.c:19
reference 4, based on the following type(s): { MPI_INTEGER}) (Information on receive of count 2 with type:MPI_INT) reference 3 rank 1:
MPI_Type_contiguous (1st
joccurrence) called from:
#0 main@example-fix3.c:13

1 Error]

reference 4 rank 1:
MPI_Type_commit (st
ccurrence) called from:
#0 main@example-fix3.c:14
References of a representativel
rocess:

eference 1 rank 0:
PI_Send (1st occurrence)
alled from:
#0 main@example-fix3.c:19

A send and a receive operation use datatypes that do not match! Mismatch occurs at (contiguous)[0MPI_INTEGER) in the send eference 2 rank 1:
type and at (MPI_INT) in the receive type (consult the MUST manual for a detailed descnpﬁon of datatype posnhons) A graphical|l Representative location: PI_Irecv (1st occurrence)
representation of this situation is available in a detailes MPI_Send (1st alled from:

0 [Errorl 1he send operation was started at reference 1, the rooelve oporaﬂon was slarted at reterence 2. (Information on communlcawr occurrence) called from: [#0 main@example-fix3.c:17
MPI_COMM_WORLD) (Information on send of count 1 with type:Datatype created at reference 3 is for Fortran, commited at [#0 main@example-fix3.c:19
reference 4, based on the following type(s): { MPI INTEGER}) (Information on receive of count 2 with type:MPI INT) eference 3 rank 0:
PL _contiguous (1st

ccurrence) called from:
#0 main@example-fix3.c:13

reference 4 rank 0:
PI_Type_commit (1st

F'ccurrence) called from:

#0 main@example-fix3.c:14

References of a representativel

process:

The memory regions to be transfered by this send operation overlap with regions spanned by a pending non-blocking receive
operation! reference 1 rank 1:

TECHNISCHE RWNTH
W

UNIVERSITAT
DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 19

Fix4: use C-datatype constants in C-code

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

[i
MPI Datatype type; 7 Use the integer

MPI_Type contiguous (2, MPI_INT, &type); datatype intended
MPI Type commit (&type) :

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf, 1, type, size - rank - 1, , MPI _COMM WORLD) ;
printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Finalize ();

return 0O;

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN \atthias Milller, Joachim Protze, Tobias Hilbrich 20

MUST detects data races in asynchronous communication

| 2 MUST Outputtie |*|
& | & fileyhome/pja16018MUST/exampleMUST_Output.heml

MUST Output, starting date: Mon Dec 2 18:36:19 2013,

Error|

The memory regions to be transfered by this send operation overlap with

Data race be
ascynchronous

tween send and
receive operation

non-blocking receive operation!

(Information on the request associated with the other communication:
Request activated at reference 1)
(Information on the datatype associated with the other communication:
MPI INT)
The other communication overlaps with this communication at position:(MPI_INT)

(Information on the datatype assoclated with this communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the following type(s): {
MPI INT})
This communication overlaps with the other communication at position: (connguous)[o](MPl NT)
A graphical representation of this situation is a\ ailable in a

01

[Error|

Representative location:
MPI_Send (1st occurrence) called
from:

#0 main@example-fix4.c:19

[References of a representative process:

reference 1 rank 1: MPI_Irecv (1st
occurrence) called from:
#0 main@example-fix4d.c:17

eference 2 rank 1: MPI_Type_contiguous
1st occurrence) called from:
#0 main@example-fix4d.c:13

eference 3 rank 1: MPI_Type_commit (1st
ccurrence) called from:
#0 main@example-fix4.c:14

There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should free
all MPI resources before calling MPI Finalize. Listing iInformation for these datatypes:

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following
type(s): { MPLINT}

Representative location:
MPI_Type_contiguous (1st
occurrence) called from:
#0 main@example-fixd.c:13

terences of a representative process:

ference 1 rank 1: MPI_Type_contiguous
1st occurrence) called from:
20 main@example-fix4.c:13

ference 2 rank 1: MPI_Type_commit (1st
ccurrence) called from:
0 main@example-fix4.c:14

01

Error|

There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should free
all MPI resources before calling MPI_Finalize. Listing information for these requests:

-Request 1: Request activated at reference 1

Representative location:
MPI_Irecv (1st occurrence) called
from:

#0 main@example-fixd.c:17

References of a representative process:

reference 1 rank 1: MPI_Irecv (1st
ocecurrence) called from:
|#0 main@example-fixd.c:17

|Error|

The memory regions to be transfered by this send operation overlap with regions spanned by a pending
non-blocking receive operation!

(Information on the request associated with the other communication:
Request activated at reference 1)
(Information on the datatype associated with the other communication:
MPI_INT)
The other communication overlaps with this communication at position:(MPI INT)

(Information on the datatype associated with this communication:
Datatype created at reference 2 is for C, commited at reference 3, based on the following type(s): {
MPI_INT})
This communication overlaps with the other communication at position:(contiguous)[0](MPI | lNT)
A graphical representation of this situation Is available in a

filesMUST_Ow

Representative location:
MPI_Send (1st occurrence) called
from:

#0 main@example-fixd.c:19

eferences of a representative process:

reference 1 rank 0: MPI_Irecv (1st
occurrence) called from:
#0 main@example-fixd.c:17

ference 2 rank 0: MPI_Type_contiguous
1st occurrence) called from:
#0 main@example-fixd.c:13

reference 3 rank 0: MPI_Type_commit (1st
joccurrence) called from:
I'O main@example-fix4.c:14

MUST has completed successfully, end date: Mon Dec 2 18:36:20 2013,

U

ICenNiouwric

UNIVERSITAT

INVN TR

DRESDEN

Matthias Muller, Joachim Protze, Tobias Hilbrich 21

Graphical representation of the race condition

| I MUST Overapfile |
& | & Neihome/pi41601BMUST/exampleMUST_Cutput-filesMUST_Overap_1_0htmi

Graphical representation of the data
race location

MUST Overlap Details, date: Mon Dec 2 18:36:19 2013.

ows details O - T
tghlighted.

The application issued a set of MPI calls that overlap in communication buffers! The gragp

MPI_Send:send(buf= 0x71143¢973a0)

MPI_Type_contiguous(count=2) | MPI_Irecvirecv(buf= +0x0)

\ J
\ /

MPLINT

TECHNISCHE I‘w I H
UNIVERSITAT

DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 22

Fix5: use independent memory regions

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);
MPI Type commit (&type)

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf + 4, 1, type, size - rank - 1, , MPI _COMM WORLD) ;
— /" Offset points to
rintf ("Hello, I am rank %d of %d. ", rank, sizeJ, .
P (! L independent
MPI Finalize (); memory

return 0O;

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN \atthias Milller, Joachim Protze, Tobias Hilbrich 23

MUST detects leaks of user defined objects

MUST Outputfile | &

-8 x
Mehome/pi416018MUST fexampleMUST_Cutput.html v "“’ ” -

MUST Output, starting date: Thu Nov 28 13:55:26 2013,

Rank(s) Message from — TReferences

References of a representative process:

reference 1 rank 0: MPI_Type_contiguous (1st
occurrence) called from:
#0 main@example-fix5.c:13

There are 1 datatypes that are not freed when MPI_Finalize was issued, a quality application should

free all MPI resources before calling MPI_Finalize. Listing information for these datatypes: Representative location:

MPI_Type_contiguous (15t

b e 1: e CTeA Lo roference Y . [oference 2 " o i occurrence) called from:
Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the following #0 main@example-fix5.c:13

type(s): { MPL_INT} reference 2 rank 0: MPI_Type_commit (1st
poccurrence) called from:
#0 main@example-fix5.c:14

0-1 [Error

There are 1 requests that are not freed when MPI_Finalize was issued, a quality \w Representative location: References of a representative process:
01 |Errod free all MPI resources before calling MPI Finalize. Listing information for these MPI_Irecv (15;;:;;:9,-mncul called reference 1 rank 0: MPI_Irecv (15t occurrence)

called from:

p@eample-fixS.c:17 #0 main@example-fix5.c:17

\

-Request 1: Request activated at reference 1

MUST has completed successfully, end date: Thu Nov 28 13:55:26 2013,

Leak of user defined

' i : datat bject
User defined objects include TYPE ORIt

MP| _Comms (even by MPlI_ Comm_dup)
MPI_Datatypes
MPI|_Groups

TECHNISCHE RWNTH

UNIVERSITAT
DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 24

Fix6: Deallocate datatype object

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI INT, &type);
MPI Type commit (&type)

MPI Request request;

MPI Irecv (buf, 2, MPI INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf + 4, 1, type, size - rank - 1, , MPI_COMM WORLD) ;

printf ("Hello, I am rank %d of %d. ", rank, size);

MPI Type free (&type): ’

MPI Finalize (); Deallocate the

created datatype

return 0O;

}

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN watthias Milller, Joachim Protze, Tobias Hilbrich 25

MUST detects unfinished asynchronous communication

| L MUST Cutputfile | -8 x
| & Me:fihome/pj41601BMUST/exampleMUST_Output.htm| v 3 N e

MUST Output, starting date: Thu Nov 28 13:55:49 2013,

eferences of a representative process:

There are 1 requests that are not freed when MPI_Finalize was issued, a quality application should free all MPI Representative location:
o1 o resources before calling MPI Finalize. Listing information for these requests: Mpl-u‘c?l'lgl s:!%c;}xn‘ence) ference 1 rank 0: MPI_Irecv (1st
-Request 1: Request activated at reference 1 #0 maln@example-fix6.c:17 urrence) called from:

0 main@example-fix6.c:17

MUST has completed successfully, end date: Thu Nov 28 13:55:49 2013,

Remaining unfinished
asynchronous receive

UNIVERSITAT
DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 26

@ TECHNISCHE RWNTH

Fix8: use MPI_Wait to finish asynchronous communication

int main (int argc, char** argv)

{

int rank, size, buf[8];

MPI Init (&argc, &argv);
MPI Comm rank (MPI_ COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

MPI Datatype type;
MPI Type contiguous (2, MPI_ INT, &type);
MPI Type commit (&type)

MPI Request request;

MPI Irecv (buf, , MPI_INT, size - rank - 1, , MPI COMM WORLD, &request);
MPI Send (buf + 4, 1, type, size - rank - 1, , MPI_COMM WORLD) ;
MPI Wait (&request, MPI STATUS IGNORE), r Finish the

_ _ asynchronous
printf ("Hello, I am rank %d of %d. ", rank, size); . .

MPI Type free (&type);

MPI Finalize ();

return 0O;

}
TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 27

[2 MusT cutputtile | & et
| & MNe:jihome/pi41601BMUSTfexampleMUST_Output htm v v "N &

MUST Output, starting date: Thu Nov 28 13:56:03 2013,

| | Information | MUST detected no MPI usage errors nor any suspicious behavior during this application run. | | |

MUST has completed successfully, end date: Thu Nov 28 13:56:00

No further error
detected

Hopefully this message
applies to many
applications

TECHNISCHE I‘w I H
UNIVERSITAT

DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 28

Content

Motivation
MPI| usage errors
Examples: Common MPI usage errors
» Including MUST's error descriptions
Correctness tools

MUST usage
TECHNISCHE
UNIVERSITAT me

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 29

Classes of Correctness Tools

Debuggers:
» Helpful to pinpoint any error
» Finding the root cause may be very hard
» Won't detect sleeping errors
» E.g.: gdb, TotalView, Alinea DDT
Static Analysis:
» Compilers and Source analyzers
» Typically: type and expression errors
» E.g.: MPI-Check
Model checking:
» Requires a model of your applications

» State explosion possible
» E.g.: MPI-Spin

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 30

Strategies of Correctness Tools

Runtime error detection:
» |Inspect MPI calls at runtime
» Limited to the timely interleaving that is observed
» Causes overhead during application run
» E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

Formal verification:
> Extension of runtime error detection
» Explores ALL possible timely interleavings

» Can detect potential deadlocks or type missmatches that
would otherwise not occur in the presence of a tool

» For non-deterministic applications exponential exploration
space

> E.g.: ISP

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 31

Content

Motivation
MPI| usage errors
Examples: Common MPI usage errors
» Including MUST's error descriptions
Correctness tools

MUST usage
TECHNISCHE
UNIVERSITAT me

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 32

MUST Usage

1) Compile and link application as usual
— Link against the shared version of the MPI lib (Usually default)

2) Replace “mpiexec” with “mustrun’
- E.qg.: mustrun —np 4 myApp.exe input.txt output.txt

3) Inspect "MUST _Output.html” in run directory
- "MUST_Output/MUST_Deadlock.dot” exists in case of deadlock
— Visualize with: dot —Tps MUST Deadlock.dot —o deadlock.ps

« The mustrun script will use an extra process for non-
local checks (Invisible to application)

 l.e.:"mustrun —np 4 ...” will issue a “mpirun —np 5 ...”
 Make sure to allocate the extra task in batch jobs

TECHNISCHE w I H
UNIVERSITAT R

DRESDEN Matthias Miiller, Joachim Protze, Tobias Hilbrich 33

MUST - Features

Local checks:
»Integer validation
»Integrity checks (pointers valid, etc.)

» Operation, Request, Communicator, Datatype,
Group usage

»Resource leak detection
»Memory overlap checks

Non-local checks:
» Collective verification
»Lost message detection
» Type matching (For P2P and collectives)
»Deadlock detection (with root cause visualization)
(L) universivar RWTH

DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 34

MUST - Features: Scalability

Local checks largely scalable
Non-local checks:
Current default uses a central process
» This process is an MPI task taken from the

application
» Limited scalability ~100 tasks (Depending on
application)
Distributed analysis available (tested with 10k
tasks)

» Uses more extra tasks (10%-100%)
Recommended: Logging to an HTML file
Uses a scalable tool infrastructure

'l;igglnggmj!guration happens at execution timeRWTH

UNIVERSITAT
DRESDEN Matthias Miller, Joachim Protze, Tobias Hilbrich 35

